
PHYSICAL REVIEW E 66, 057101 ~2002!
Sweeny and Gliozzi dynamics for simulations of Potts models
in the Fortuin-Kasteleyn representation
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We compare the correlation times of the Sweeny and Gliozzi dynamics for two-dimensional Ising and
three-state Potts models, and the three-dimensional Ising model for the simulations in the percolation repre-
sentation. The results are also compared with Swendsen-Wang and Wolff cluster dynamics. It is found that
Sweeny and Gliozzi dynamics have essentially the same dynamical critical behavior. Contrary to Gliozzi’s
claim @Phys. Rev. E66, 016115~2002!#, the Gliozzi dynamics has critical slowing down comparable to that of
other cluster methods. For the two-dimensional Ising model, both Sweeny and Gliozzi dynamics give good fits
to logarithmic size dependences for the correlation times; for two-dimensional three-state Potts model, their
dynamical critical exponentz is 0.4960.01; the three-dimensional Ising model hasz50.3760.02.
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Cluster algorithms have played an interesting role in s
tistical physics, both for their importance in constructing
ficient computational algorithms and their unusual dynam
properties. Very recently, Gliozzi has introduced a new cl
ter algorithm, which he claims to be free of critical slowin
down @1#. Since an understanding of the dynamics at
critical temperature is central to both dynamic universa
classes and computational efficiency, we have made a c
parison of the four main cluster methods for Potts mod
due to Sweeny@2#, Swendsen and Wang@3#, Wolff @4#, and
Gliozzi @1#.

In 1983 Sweeny@2# simulated the Potts model@5# directly
in the Fortuin-Kasteleyn representation@6#, given by the
probability distribution of percolation bond configurationG,

P~G!}S p

12pD b

qNc, ~1!

wherep512exp@2J/(kT)#, J is the coupling constant in th
Potts model,k is the Boltzmann constant, andT is tempera-
ture; b is the number of bonds present on the~hypercubic!
lattice, andNc is the number of clusters of the percolatio
configuration.

Sweeny used a heat-bath rate of ‘‘flipping’’ the links fro
occupied to empty or vice versa. Consider a particular li
We define the state 1 to mean a presence of a bond, 0
absence of a bond,b for an unoccupied link such that th
two nearest neighbor sites are on different clusters, andg for
an unoccupied link that spans the same cluster, see Fig.
addition, we define 1b to be an occupied bond, the remov
of which leads tob, and similarly 1g is an occupied bond
the removal of which leads tog. Finally, a dot~•! represents
an arbitrary state~0 or 1!. Assuming a link is picked up a
random, the transition rate for Sweeny’s dynamics is

w~•→1g!5p, w~•→g!512p, ~2a!
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w~•→1b!5
p

~12p!q1p
, w~•→b!5

~12p!q

~12p!q1p
.

~2b!

Note that the transition probabilities do not depend on
initial state, as it is generally the case for the heat-bath a
rithms.

Gliozzi also worked in the Fortuin-Kasteleyn represen
tion @6# and proposed a variation on the flip rate@1# that is
only slightly different from Sweeny’s:

w~1→1!5p, w~1→0!512p, ~3a!

w~g→1!5p, w~g→0!512p, ~3b!

w~b→1!5p/q, w~b→0!512p/q. ~3c!

FIG. 1. Different types of links: 1~occupied bond!, 0 ~absence
of a bond!, b ~unoccupied link that bridges two clusters!, g ~unoc-
cupied link that spans the same cluster!, 1b ~bond, removing of
which breaks the cluster!, 1g ~bond, removing of which does no
break the cluster!.
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The Gliozzi’s proposal has the advantage that one only ne
to check if the two sites belong to the same cluster.

One can easily show that both of the algorithms sati
detailed balance with respect to the equilibrium distributio
Eq. ~1!. Both Sweeny and Gliozzi’s rates are applicable
model with real positiveq ~not just integer values!, although
Gliozzi’s rate has the restriction thatp/q<1. We also note
that Chayes and Machta proposed a cluster algorithm
nonintegerq, which takesO(Ld) operations per sweep@7#.

A key implementation issue in both algorithms is the d
termination of whether the two sites belong to the same c
ter. For two dimensions, Sweeny devised a very effici
method based on the special topology. In three and hig
dimensions, one has to contend with the shortcoming th
move takes an amount of CPU time proportional to the ty
cal size of the clusters.

Although Sweeny also claimed no critical slowing dow
for his algorithm, the size dependence of correlation tim
has not been calculated. To separate the issues of the intr
dynamics of the transition rates from the efficiency of t
numerical implementation, we present results for the co
lation times of both Sweeny and Gliozzi dynamics, measu
in Monte Carlo sweeps regardless of the actual comp
time for a particular implementation. We also compare th
in the same way with Swendsen-Wang@3# and Wolff @4#
cluster dynamics.

We consider the integrated correlation time, which is
rectly relevant to the magnitude of statistical errors@8#. In-
stead of the usual method of computing the autocorrela
function for, say, energy,

f ~ t !5
^E~0!E~ t !&2^E~0!&2

^E~0!2&2^E~0!&2
, ~4!

a totally equivalent way is to compute the variance ofM
consecutive terms of the sum of energies,

EM5
1

M (
t51

M

E~ t !. ~5!

We have for the variance@9#

var~EM !5
tM var~E1!

M
. ~6!

A straightforward variance estimator, i.e., the squared m
minus the sample mean squared, is used. The usual cor
tion timet is the limit of M going to infinity, and is related to
the correlation function by

t5 lim
M→`

tM5 (
t52`

`

f ~ t !. ~7!

Kikuchi et al. @10# have used a similar method to extra
exponential correlation times. Other conventions for spec
ing the correlation time are in use. For example, Mu¨ller-
Krumbhaar and Binder@8# call t8 the correlation time, where
t5112t8, and Baillie and Coddington@11# use the defini-
tion t95t/2.
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The truncated sum converges to its limit according
1/M . Thus we obtain the limit with a plot oftM versus 1/M ,
as shown in Fig. 2. The method appears excellent for dyn
ics with relatively small values oft. When t is large, we
have to go to much bigger values ofM, where the noise can
dominate the signal, rendering the method less useful.

We performed our simulations at the critical temperatu
kTc(q)/J51/ln(Aq11) in two dimensions, and atJ/(kTc)
50.221 657 for the three-dimensional Ising model@13#. For
each data point, we have spent about two to four week
CPU time on 1 GHz Pentium PCs. For the Sweeny a
Gliozzi dynamics, a unit of timet ~for linear sizeL in d
dimensions! is dLd moves with a bond selected at random
We note that Gliozzi used a sequential sweep of the bon
which gives correlation time that is smaller by a factor
about 0.6. We believe that the asymptotic behavior of
dynamics should not depend sensitively on whether we
random or sequential updating. The correlation time data
given in Table I.

Figure 3 contains a semilogarithmic plot oft versusL for
the four algorithms: Sweeny, Gliozzi, Swendsen-Wang, a
Wolff. It is remarkable that Gliozzi dynamics and to som
extent Sweeny is perfectly logarithmic in size down to
32 lattice. For both Swendsen-Wang and Wolff, some c
vature can be seen in this plot, and the data can also be fi
with a small exponent of 0.25@11# as well. We consider it
still to be an open question for Swendsen-Wang and W
dynamics whether the correlation times depend on lat
sizes as a small power or logarithmically@14#.

In Fig. 4, results for the two-dimensional, three-state Po
model are presented. The straight lines in these log-log p
show good power-law dependence for all algorithms. T
data show an interesting possibility that Sweeny and Glio
belong to a different dynamical universality class fro

FIG. 2. tM versus 1/M for the two-dimensional Ising mode
with Gliozzi dynamics on a 32332 lattice, with 83106 Monte
Carlo sweeps. The straight is an error weighted least-square
The intercept gives the correlation timet56.5360.01.
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Swendsen-Wang. Linear least-squares fits give the dynam
critical exponentz50.5660.01 for Swendsen-Wang an
0.5860.01 for Wolff, with lower values of 0.4860.01 for
Sweeny and 0.4960.01 for Gliozzi dynamics. The differ
ences are statistically significant.

TABLE I. Correlation timet for Sweeny and Gliozzi dynamic
at various system sizes. The number in parentheses is standard
at the last digits.

L Sweeny rate Gliozzi rate

2D Ising
2 2.6121~3! 2.9414~4!

4 3.3280~3! 3.8722~7!

8 4.006~2! 4.738~1!

16 4.688~5! 5.607~5!

32 5.46~2! 6.51~3!

64 6.21~3! 7.54~5!

2D q53 Potts
2 3.0736~2! 3.8111~4!

4 4.5375~8! 5.9245~5!

8 6.424~2! 8.604~3!

16 9.06~2! 12.18~1!

32 12.56~5! 17.10~5!

64 17.5~3! 24.0~2!

3D Ising
2 3.0242~3! 3.3456~4!

4 4.254~2! 4.814~16!

8 5.594~8! 6.375~8!

16 7.1~1! 8.0~2!

32 9.0~5! 11.4~10!

FIG. 3. Correlation timest versus lattice linear dimensionL on
a semilogarithmic scale for the two-dimensional Ising model atTc .
The circles are for Sweeny, squares for Gliozzi, diamonds
Swendsen-Wang, and triangles for Wolff dynamics. Straight li
are fits to asymptotic slopes at largeL. The Swendsen-Wang dat
are from Ref.@12# and Wolff data are from Ref.@11#.
05710
al

Figure 5 is for the three-dimensional Ising model. Aga
we see similar behavior, although the data are less accu
comparing to that of two dimensions. Sweeny and Glio
dynamics have approximately the same dynamical crit
exponent of 0.3760.02, while that of the Swendsen-Wang
larger at about 0.5. Wolff single cluster algorithm gives r
markably small correlation times and a small exponent
0.29 @15#. The Swendsen-Wang data show some curvat
and might approach the same asymptotic value for large
tices.

In summary, we have computed the correlation times
cluster algorithms. It is clear that Sweeny and Gliozzi ha

rror

r
s

FIG. 4. Same as Fig. 3, but on a double logarithmic scale for
two-dimensional three-state Potts model atTc . The number on the
line indicates the slope of the line. The Swendsen-Wang and W
data are from Ref.@11#.

FIG. 5. Correlation timest versus lattice linear dimensionL on
a double logarithmic scale for the three-dimensional Ising mode
Tc of Sweeny~circles!, Gliozzi ~squares!, Swendsen-Wang~dia-
monds!, and Wolff ~triangles! dynamics. The number on the straig
line indicates the slope of the line.
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the same dynamics. In all cases studied here, the Sweeny
is actually better than Gliozzi’s in terms of correlation time
although Gliozzi’s rate can be implemented somewhat m
efficiently in three dimensions. Both rates reduce criti
slowing down, but do not completely eliminate it. Bo
Sweeny and Gliozzi dynamics seem to have somew
smaller dynamical critical exponents than Swendsen-W
pp
a
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when measured in units of Monte Carlo sweeps, as we h
done in this paper.
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