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Sweeny and Gliozzi dynamics for simulations of Potts models
in the Fortuin-Kasteleyn representation
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We compare the correlation times of the Sweeny and Gliozzi dynamics for two-dimensional Ising and
three-state Potts models, and the three-dimensional Ising model for the simulations in the percolation repre-
sentation. The results are also compared with Swendsen-Wang and Wolff cluster dynamics. It is found that
Sweeny and Gliozzi dynamics have essentially the same dynamical critical behavior. Contrary to Gliozzi’s
claim[Phys. Rev. B66, 016115(2002], the Gliozzi dynamics has critical slowing down comparable to that of
other cluster methods. For the two-dimensional Ising model, both Sweeny and Gliozzi dynamics give good fits
to logarithmic size dependences for the correlation times; for two-dimensional three-state Potts model, their
dynamical critical exponert is 0.49+0.01; the three-dimensional Ising model tzas0.37=0.02.
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Cluster algorithms have played an interesting role in sta- p (1-p)q
tistical physics, both for their importance in constructing ef- W(-—1pg)= 1-p)g+p’ w(-—pB)= 1-pg+p’
ficient computational algorithms and their unusual dynamical (2b)

properties. Very recently, Gliozzi has introduced a new clus-

ter algorithm, which he claims to be free of critical slowing Note that the transition probabilities do not depend on the
down [1]. Since an understanding of the dynamics at thepitig| state, as it is generally the case for the heat-bath algo-
critical temperature is central to both dynamic universalityyijthms.

classes and computational efficiency, we have made a com- Gjiozzj also worked in the Fortuin-Kasteleyn representa-

parison of the four main cluster methods for Potts modelgjon [6] and proposed a variation on the flip rdfd that is
due to ?vi/eenﬂ], Swendsen and Warf@], Wolff [4], and  only slightly different from Sweeny’s:
Gliozzi [1].

In 1983 Sweeny?2] simulated the Potts modgs] directly w(l—1)=p, w(1—0)=1—p, (33
in the Fortuin-Kasteleyn representati¢6], given by the
probability distribution of percolation bond configuratibn

w(y—1)=p, w(y—0)=1-p, (3b)
b
p(r)oc(l . q'e, (1) w(B—1)=p/q, w(B—0)=1-p/q. €]
[ ] [ J ® ® [ J [ ]
wherep=1—exd —J/(kT)], Jis the coupling constant in the Ig
Potts modelk is the Boltzmann constant, afdis tempera- o . o . . o
ture; b is the number of bonds present on ttigypercubi¢
lattice, andN, is the number of clusters of the percolation B
configuration. ° ° ° . )
Sweeny used a heat-bath rate of “flipping” the links from
occupied to empty or vice versa. Consider a particular link.
We define the state 1 to mean a presence of a bond, 0 for ¢ o v s ¢
absence of a bong3 for an unoccupied link such that the 1,
two nearest neighbor sites are on different clusters jafut ° ° °
an unoccupied link that spans the same cluster, see Fig. 1. In
addition, we define 4 to be an occupied bond, the removal L
of which leads tog, and similarly 1, is an occupied bond, L ° L . ° L

the removal of which leads tg. Finally, a dot(-) represents
an arbitrary stat€0 or 1). Assuming a link is picked up at
random, the transition rate for Sweeny’s dynamics is

FIG. 1. Different types of links: Xoccupied bong 0 (absence
of a bond, B (unoccupied link that bridges two clustgry (unoc-
cupied link that spans the same cluster; (bond, removing of
which breaks the clustgrl, (bond, removing of which does not
w(-—1,)=p, w(—y)=1-p, (2a) break the clustgr
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The Gliozzi’s proposal has the advantage that one only need 7 - - -
to check if the two sites belong to the same cluster.
One can easily show that both of the algorithms satisfy E?s'ging Gliozzi |
detailed balance with respect to the equilibrium distribution, -
Eq. (1). Both Sweeny and Gliozzi's rates are applicable to
model with real positivey (not just integer valugsalthough 6
Gliozzi's rate has the restriction thatq<1. We also note
that Chayes and Machta proposed a cluster algorithm foi
nonintegerg, which takesO(L®) operations per swedf]. e 55
A key implementation issue in both algorithms is the de-
termination of whether the two sites belong to the same clus- 5|
ter. For two dimensions, Sweeny devised a very efficient
method based on the special topology. In three and highe
dimensions, one has to contend with the shortcoming that ¢ 45 |
move takes an amount of CPU time proportional to the typi-

cal size of the clusters. 4 s s .
Although Sweeny also claimed no critical slowing down 0 0.04 0.08 0.12
for his algorithm, the size dependence of correlation times ™

has not been calculated. To separate the issues of the intrinsic -, 5 7 versus I for the two-dimensional Ising model
dynamics of the transition rates from the efficiency of thein Giiozzi dynamics on a 3232 lattice, with 8<1C° Monte
numerical implementation, we present results for the correcarlo sweeps. The straight is an error weighted least-squares fit.
lation times of both Sweeny and Gliozzi dynamics, measureghe intercept gives the correlation time-6.53+0.01.

in Monte Carlo sweeps regardless of the actual computer

time for a particular implementation. We also compare them

in the same way with Swendsen-Wafg and Wolff [4] The truncated sum converges to its limit according to
cluster dynamics. 1/M. Thus we obtain the limit with a plot ofy, versus 1,

We consider the integrated correlation time, which is di-8s shown in Fig. 2. The method appears excellent for dynam-
rectly relevant to the magnitude of statistical errf8$ In-  ics with relatively small values of. When 7 is large, we
stead of the usual method of computing the autocorrelatiofave to go to much bigger values i, where the noise can
function for, say, energy, dominate the signal, rendering the method less useful.

We performed our simulations at the critical temperature
_ (E(0)E(t))—(E(0))? kT,(q)/J=1/In(g+1) in two dimensions, and a¥(kT,)
H= (E(0)2)—(E(0))2 ' (4) =0.221 657 for the three-dimensional Ising mofEs]. For
each data point, we have spent about two to four weeks of
a totally equivalent way is to compute the varianceMf CPU time on 1 GHz Pentium PCs. For the Sweeny and

consecutive terms of the sum of energies, Gliozzi dynamics, a unit of time (for linear sizeL in d
M dimensions is dLY moves with a bond selected at random.
E :i 2 E(t) 5) We note that Gliozzi used a sequential sweep of the bonds,
MTM & ' which gives correlation time that is smaller by a factor of

about 0.6. We believe that the asymptotic behavior of the
We have for the varianc9] dynamics should not depend sensitively on whether we use
random or sequential updating. The correlation time data are
(6) given in Table I.
Figure 3 contains a semilogarithmic plot oversusL for

A straightforward variance estimator, i.e., the squared meal{'® four algorithms: Sweeny, Gliozzi, Swendsen-Wang, and

minus the sample mean squared, is used. The usual correldOlff. It is remarkable that Gliozzi dynamics and to some
tion time 7 is the limit of M going to infinity, and is related to €Xtent Sweeny is perfectly logarithmic in size down to 2
the correlation function by X 2 lattice. For both Swendsen-Wang and Wolff, some cur-

vature can be seen in this plot, and the data can also be fitted
_ ” with a small exponent of 0.2B11] as well. We consider it
T= |v|||m T'\":t;m f(t). (7) " still to be an open question for Swendsen-Wang and Wolff
o dynamics whether the correlation times depend on lattice

Kikuchi et al. [10] have used a similar method to extract Sizes as a small power or logarithmicalt4].

exponential correlation times. Other conventions for specify- [N Fig. 4, results for the two-dimensional, three-state Potts
ing the correlation time are in use. For example, |kl model are presented. The straight lines in these log-log plots
Krumbhaar and Bind€i8] call 7' the correlation time, where show good power-law dependence for all algorithms. The
7=1+27', and Baillie and Coddingtofl1] use the defini- data show an interesting possibility that Sweeny and Gliozzi
tion 7= 7/2. belong to a different dynamical universality class from

Ty VarnEy)

vanEy)= M
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TABLE I. Correlation timer for Sweeny and Gliozzi dynamics 100 T T
at various system sizes. The number in parentheses is standard err
at the last digits. 2D Potts, q=3
58
L Sweeny rate Gliozzi rate
2D Ising
2 2.61213) 2.94144)
4 3.328@3) 3.87227) e
8 4.0062) 4.7381) 10 L ]
16 4.6885) 5.6015) [
32 5.462) 6.51(3) Gliozzi Sweeny
64 6.213) 7.545)
2D q=3 Potts
2 3.07362) 3.81114)
4 4.5375%8) 5.92455) ) )
8 6.4242) 8.6043) 1 10 100
16 9.062) 12.181) L
32 12.565) 17.105) FIG. 4. Same as Fig. 3, but on a double logarithmic scale for the
64 17.83) 24.02) two-dimensional three-state Potts modelrat The number on the
3D lIsing line indicates the slope of the line. The Swendsen-Wang and Wolff
2 3.02423) 3.34564) data are from Ref(11].
4 4.2542) 4.81416)
?6 57’?3;(8) 22(72?8) Figure_5 _is for the _three-dimensional Ising model. Again
' ' we see similar behavior, although the data are less accurate
32 9.45) 11.410)
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comparing to that of two dimensions. Sweeny and Gliozzi
dynamics have approximately the same dynamical critical
exponent of 0.3%0.02, while that of the Swendsen-Wang is

Swendsen-Wang. Linear least-squares fits give the dynamickrger at about 0.5. Wolff single cluster algorithm gives re-

critical exponentz=0.56+0.01 for Swendsen-Wang and markably small correlation times and a small exponent of
0.58+0.01 for Wolff, with lower values of 0.480.01 for ~ 0.29[15]. The Swendsen-Wang data show some curvature
Sweeny and 0.490.01 for Gliozzi dynamics. The differ- and might approach the same asymptotic value for large lat-
ences are statistically significant. tices.

12

2D Ising
10

Wolft

FIG. 3. Correlation times versus lattice linear dimensidnon
a semilogarithmic scale for the two-dimensional Ising moddlat

100

In summary, we have computed the correlation times for
cluster algorithms. It is clear that Sweeny and Gliozzi have

3D Ising

10

Gliozzi

Sweeny

0.29

Wolff

AL

10 100
L

FIG. 5. Correlation times versus lattice linear dimensidnon

The circles are for Sweeny, squares for Gliozzi, diamonds fora double logarithmic scale for the three-dimensional Ising model at
Swendsen-Wang, and triangles for Wolff dynamics. Straight linesT, of Sweeny(circles, Gliozzi (squares Swendsen-Wangdia-

are fits to asymptotic slopes at large The Swendsen-Wang data monds, and Wolff (triangles dynamics. The number on the straight
are from Ref[12] and Wolff data are from Refl1].

line indicates the slope of the line.
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the same dynamics. In all cases studied here, the Sweeny ratdhen measured in units of Monte Carlo sweeps, as we have
is actually better than Gliozzi's in terms of correlation times,done in this paper.

although Gliozzi's rate can be implemented somewhat more

efficiently in three dimensions. Both rates reduce critical J--S.W. acknowledges the hospitality of the Departments
slowing down, but do not completely eliminate it. Both Of Physics of Carnegie Mellon University and Tokyo Metro-
Sweeny and Gliozzi dynamics seem to have somewhagolitan University, where part of the work was done during a
smaller dynamical critical exponents than Swendsen-Wangabbatical leave. He also thanks Y. Okabe for discussion.
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